Refine Your Search

Topic

Search Results

Technical Paper

Development of a 430cc Constant Power Engine for FSAE Competition

2006-04-03
2006-01-0745
This paper describes the design and development of an engine with constant power for SAE's student Formula race-car competition, allowing the avoidance of gear shifting for much of the Autocross event. To achieve constant power for over 50% of the speed range, turbocharging was adopted with a boost pressure ratio of 2.8 at mid-range speeds and applied to an engine capacity of 430 cc. This engine was specifically designed and configured for the purpose, being a twin cylinder in-line arrangement with double overhead camshafts. Most of the engine components were specially cast or machined from billets. The capacity was selected to minimise frictional losses and thus increase delivered power along with dry sump lubrication and a three speed gear box. The engine manifolds and plenums were designed using a CAE application and proved to be well suited to the task resulting in excellent agreement between predicted and actual performance.
Technical Paper

Opportunities for making LPG a clean and low greenhouse emission fuel

2005-05-11
2005-01-2217
It is shown that LPG has the potential to be a main stream fuel because of its low particulate emissions and low greenhouse emission potential. The experimental study reported is directed at minimising the cost of LPG optimised engines through the use of gas phase, throttle body injection in an engine with 11.7 compression ratio up from 9.65 of the base gasoline engine. The advantages of throttle body injection, guided by CFD studies, are extension of the lean limit to lambda 1.6, where NOx is low enough to meet Euro4 emission standards without a reducing catalyst, as deduced from bench test results. Comparison is also made between throttle body and both liquid and gas phase multipoint port injection. Differences in the method of mixing significantly affect engine performance. Notable improvements in emissions and thermal efficiencies were achieved when compared with gasoline, eg.
Technical Paper

MPI Air/Fuel Mixing for Gaseous and Liquid LPG

2005-04-11
2005-01-0246
This paper presents a parametric, experimental study of the performance of gas and liquid propane injection in a spark ignition, multi-point port injected (MPI) engine. An inline, six cylinder engine is used over a wide range of speeds and torques, and the air/fuel ratio, compression ratio and injection timing are all varied. The engine was mapped at the standard compression ratio of 9.65:1 with the original, gasoline MPI system, propane gas MPI, and single point, throttle body, propane gas injection. Gas and liquid propane MPI are then tested at a compression ratio of 11.7:1. Contour plots of thermodynamic efficiency and the specific emissions of HC, NOx, CO2 and CO over the torque/speed range are presented and compared. The results show significant differences in performance between gas and liquid propane MPI injection, as well as the MPI and throttle body gas injection.
Technical Paper

Turbocharging for Fuel Efficiency

1983-02-01
830014
The arguments are given for the application of a 1.3 litre turbocharged spark ignition engine, as a substitute for a 2 litre normally aspirated engine as the power plant for a compact-sized car in the late 80’s. Three stages of the project leading to an optimised engine-turbocharger package are outlined. Achievement of Stage 1, leading to evaluation of a non-optimised configuration, will be reported. Description includes the use of a separately driven supercharger to define operating limits in the experimental variable matrix comprising compression ratio, boost pressure, EGR rate and spark retard at the knock limit. Computer programs for the optimising stages of the project are outlined. The current status of the project is reported, where, even at this early stage, fuel consumption reductions of 11-22% have been achieved under simulated urban driving conditions.
Technical Paper

Observation of the Effect of Swirl on Flame Propagation and the Derived Heat Release and Mass Burning Rates

1987-11-08
871175
A high speed research engine has optical access to over 80% of the combustion chamber volume through a piston with a quartz window. The engine has been used to study the effect of swirl on the spark-ignited combustion by means of high speed photography and analysis of combustion-time data. Results over the speed, swirl and mixture strength range show the flame travel derived from the pressure to agree with the measured flame travel to within 3% on average. Turbulent to laminar flame speed ratios as high as 45 occur under high swirl conditions. However it was not possible to find a predictive model which could explain the turbulent flame speed in terms of engine design variables.
Technical Paper

Estimates of the Fuel Consumption and Exhaust Emissions of Light Trucks

1987-11-08
871235
A fleet of 17 utility, van and flat tray bodied trucks has been tested for fuel consumption and exhaust emissions over a range of drive cycles and steady state operating conditions. The influence of vehicle load on the results was included. For each vehicle the tractive force applied by the chassis dynamometer, on which testing was performed, was adjusted to match those found on the road using a new procedure. The fuel consumption results show a downward trend with model year (1.7% annum); about 30% higher petrol use compared with diesel; a cold start penalty of 3 L/100 km and over 2:1 variation for vehicles capable of identical transport task. Exhaust emissions from these rigid trucks were between 3 and 6 times greater than those of the passenger car fleet.
Technical Paper

Parametric Investigations into Combustion of Seed Oils in a Diesel Engine

1987-11-08
871240
A thermodynamic model has been employed to study the effect of changing injection timing, spray angle, fuel density, fuel viscosity, chemical reaction rate constants and air entrainment on the combustion performance of seed oils and their methyl esters in an open chamber diesel engine. It is shown that the most important valuables affecting the performance are fuel density and fuel viscosity. It is deduced that modification of these physical properties can lead to substantial improvement in the combustion performance of the seed oils.
Technical Paper

Quasi-Dimensional and CFD Modelling of Turbulent and Chemical Flame Enhancement in an Ultra Lean Burn S.I. Engine

2000-03-06
2000-01-1263
HAJI, or Hydrogen Assisted Jet Ignition, is an ignition system which uses a hot gaseous jet to initiate and stabilise combustion. HAJI allows a dramatic reduction of cyclic variability, and an extension of the lean limit of the engine to lambda 5. Improvements in cyclic variability lead to increased power output, reduced noise, wear on components and emissions. The ability to operate ultra lean gives 25% improvements in efficiency and extremely low emissions, particularly of NOx. Combustion analysis based on the fractal dimensions of the propagating flame fronts, obtained from optical flame data, support the hypothesis of enhancement of flame speeds through the presence of active chemical species. However, the relative contributions of turbulence and active species to the mechanisms of combustion enhancement realised with HAJI are not well defined. HAJI ignition has also been simulated with a comprehensive three dimensional combustion code, KIVA3.
Technical Paper

The Systematic Evaluation of Twelve LP Gas Fuels for Emissions and Fuel Consumption

2000-06-19
2000-01-1867
The effects on bi-fuel car exhaust emissions, fuel consumption and acceleration performance of a range of LPG fuels has been determined. The LPGs tested included those representing natural gas condensate and oil refineries' products to include a spectrum of C3:C4 and paraffiinic:olefinic mixtures. The overall conclusions are that exhaust emissions from the gaseous fuels for the three-way catalyst equipped cars tested were lower than for gasoline. For all the LPGs, CO2 equivalent emissions are reduced by 7% to 10% or more compared with gasoline. The cars' acceleration performance indicates that there was no sacrifice in acceleration times to various speeds, with any gaseous fuel in these OEM developed cars.
Journal Article

Safety Assurance Concepts for Automated Driving Systems

2020-04-14
2020-01-0727
Automated driving systems (ADSs) for road vehicles are being developed that can perform the entire dynamic driving task without a human driver in the loop. However, current regulatory frameworks for assuring vehicle safety may restrict the deployment of ADSs that can use machine learning to modify their functionality while in service. A review was undertaken to identify and assess key initiatives and research relevant to the safety assurance of adaptive safety-critical systems that use machine learning, and to highlight assurance concepts that could benefit from further research. The primary objective was to produce findings and recommendations that can inform policy and regulatory reform relating to ADS safety assurance.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Modeling of Trace Knock in a Modern SI Engine Fuelled by Ethanol/Gasoline Blends

2015-04-14
2015-01-1242
This paper presents a numerical study of trace knocking combustion of ethanol/gasoline blends in a modern, single cylinder SI engine. Results are compared to experimental data from a prior, published work [1]. The engine is modeled using GT-Power and a two-zone combustion model containing detailed kinetic models. The two zone model uses a gasoline surrogate model [2] combined with a sub-model for nitric oxide (NO) [3] to simulate end-gas autoignition. Upstream, pre-vaporized fuel injection (UFI) and direct injection (DI) are modeled and compared to characterize ethanol's low autoignition reactivity and high charge cooling effects. Three ethanol/gasoline blends are studied: E0, E20, and E50. The modeled and experimental results demonstrate some systematic differences in the spark timing for trace knock across all three fuels, but the relative trends with engine load and ethanol content are consistent. Possible reasons causing the differences are discussed.
Technical Paper

The Psychological and Accident Reconstruction “Thresholds” of Drivers' Detection of Relative Velocity

2014-04-01
2014-01-0437
Relative velocity detection thresholds of drivers are one factor that determines their ability to avoid rear-end crashes. Laboratory, simulator and driving studies show that drivers could scale relative velocity when it exceeded the threshold of about 0.003 rad/sec. Studies using accident reconstruction have suggested that the threshold may be about ten times larger. This paper discusses this divergence and suggests reasons for it and concludes that the lower value should be used as a true measure of the psychological threshold for detection of relative velocity.
Technical Paper

Experimental and Numerical Analysis of Engine Gas Exchange, Combustion and Heat Transfer during Warm-Up

2008-06-23
2008-01-1653
This paper presents experimental and computational results obtained on an in line, six cylinder, naturally aspirated, gasoline engine. Steady state measurements were first collected for a wide range of cam and spark timings versus throttle position and engine speed at part and full load. Simulations were performed by using an engine thermo-fluid model. The model was validated with measured steady state air and fuel flow rates and indicated and brake mean effective pressures. The model provides satisfactory accuracy and demonstrates the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC. However, results show that three major areas still need development especially at low loads, namely combustion, heat transfer and friction modeling, impacting respectively on IMEP and FMEP computations. Satisfactory measurement of small IMEP and derivation of FMEP at low loads is also a major issue.
Technical Paper

Turbocharging for the Fuel Efficient Urban Car

1983-11-07
830878
The arguments are given for the use of a 1.3 litre turbocharged spark ignition engine as a substitute for a 2 litre normally aspirated engine for late-80's compact cars. Descriptions of the three stages leading to an optimised engine-turbocharger package are described, together with details of the prototype TC engine manufacture and testing including supercharger tests to define operating limits. An outline of the optimising computer program is given, together with examples of computed camshaft designs giving significantly improved performance at low engine speeds. Some experimental results are given, including those of in-car testing which showed fuel consumption reductions of 12-22% over urban driving cycles.
Technical Paper

Benefit from In-service Life Optimized for Minimum CO2 – Comparison of ICEVs, PHEVs, BEVs and FCEVs

2024-04-09
2024-01-2443
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs.
X